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The long-term asymptotic behaviour of the pressure build-up curve is found using the fractal model of 

a cracked medium (CPM) [l]. All processes are assumed to be isothermal. 

The motion of a fluid in a CPM is usually described by a model [24] . m which the cracks and the matrix 
are represented by continua penetrating one another, each with its own individual porosity and 
permeability, the saturating fluid being exchanged between the cracks and the matrix. It is known, how- 
ever, that in real cracked rocks the cracks form a system which cannot be regarded as continuous at 
distances comparable with the size of porous blocks. 

The theory of fractals, i.e. sets with fractional spatial dimensions [5, 61, has been used recently to 
describe objects with complex irregular geometry. It has been observed that the cracks formed when the 
system is fractured are well described by fractal geometry [7-91. A model of CPM was proposed in [I] in 

which the cracks form a fractal of Hausdorff-Birkhoff dimension d embedded in a porous continuum of 
spatial dimension (Db d, D =2 or D= 3, D =2 corresponds to the plane problem, while D = 3 to the 

spatial problem; when d = D the equations of the model [l] reduce to the equations of the continuum 

model [24]). 
We will adopt the usual meaning of a “fractal” used in the literature [5, 61: fractional dimension d, local 

self-similarity on the average, and power asymptotic behaviour of all fractal characteristics averaged over 
a sphere of sufficiently large radius. 

Let p = p,(t, r) be the density of the fluid inside the cracks, let p2 = p,(t, r) be the density of the fluid in 
the matrix, and let t be the time and r the radial coordinate. The following conservation of mass integral 
equations are satisfied for the cracks and blocks, respectively 

(2) 

Here r, and r, are arbitrary positive quantities, nl, is a geometric factor characterizing the degree of 
opening of the cracks, t% characterizes the porosity of the blocks, j. is the radial component of the mass 
flow from the blocks into cracks, dp “, is the Hausdorff measure of a set of spatial dimension n [lo], and 
dp: is a measure on the intersection of the fractal and a sphere of radius r defined by dpi = drdp:. The 
relations 
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j dpi=$-* j&$=&tad, ad =21r~‘~/I(d/2) 
‘=‘I VI 

holds, where a,, is the surface area of the (~-1)-dime~ional unit sphere. 

One can usually neglect the mass of the fluid inside the cracks. Then Eq. (1) takes the form 

(3) 

It is natural to choose the expressions for j, and q in the form [l] 

Here A = p(p,) and p2 = p(p,) are the pressures inside the cracks and blocks, respectively, lt = i_t(p) is 
the shear viscosity, E = (D-d) is the space deficiency, and k and /I are positive constants. 

We shall assume that the rock framework is non-deformable. Then the equations 

(pr-(d-l)~ 
ar p ( -1 d-l * r p1 at 1 B 

+-(P2P2 -Pt& )r-E 
b 

follow from (2)-(5). 
It follows that the model contains phenomenological parameters of dimensions [k] = Le+’ and [@] = I?. 
When d = D (the system of cracks turns into a continuous medium), k becomes the ordinary perme- 

ability and Eqs (6) can be reduced to the Barenblatt-Zheltov equations [2-4]. 
We will solve the problem in the cylindrically symmetric formulation (D = 2). The first equation in (5) 

implies that the mass yield of a crack of radius r, per unit productive layer thickness amounts to 

Q = ad&lk(p-lplapl /WI,,, (7) 

We shall assume that the densities pr and p2 become equa1 at spatial infinity, while j,, tends to zero. 
The problem consists of determining pi I,=,, for t > 0 when Q = Q(t) = Q,e(-t) from the system of equations 
(6) and the equation of state p = p(p) (e(t) is the Heaviside function and Q, is a constant). 

Since we are concerned with a liquid, the linear approximation can be used. We set 6, =(p, -pO)/po, 

where p0 is a constant having the dimensions of density, and assume that 16, t al. Then Eqs (6) and (7) 

become 

2E O=AdSt+pk-‘(82-6,)r-‘, ?&/at=y(S1-S2)r- (8) 

When t <: 0 problem (8), (9) has a steady-state solution 

Since one must determine (6, -S,) for t > 0 to fiid the pressure build-up curve, by the linearity of the 
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problem it suffices to solve the system with the following initial and boundary conditions 

61 LO =b I,=0 =a (6, -82)lr=+_ =o, z _ =-Q&e(r), % _ =o 
r-a r-+00 

We apply a Laplace transformation to (8) and (10) (s being the transformation parameter), substitute 
r = r0rt-“(2’) for the independent variable, and eliminate g,(s). from the equations. We therefore obtain the 

following equation and boundary conditions for 6,(s) 

&0=~/(4&~kr,f), v,=E-‘+3/2, yo=yF2’, C,o=Q,ro/(2~<) (11) 

Since the problem consists of computing the asymptotic form of 6, I$=1 for long positive times, it 
suffices to determine the asymptotic behaviour of g,(s) for small positive s. This problem will be solved 

apart from a factor of the form (1+0(s)). 
Note that for 0 <n es the asymptotic equality 6,(s) = f” holds where f” satisfies the equation and 

boundary condition 

which follow from (11). 
For sQqe1 the asymptotic equality 6,(s) = f’ h o Id s, where f’ satisfies the equation and boundary 

condition 

(A$ _ s~oy~lq-(y~+l) )f’ =o; df’ /dl&, =&g-’ (13) 

which follow from (11). 
The functions f” and f1 must be connected by the compatibility conditions 

(14) 

where 11. = hs and h is a certain finite positive quantity. 

We introduce the new auxiliaty notation 

2P2 
vi =v,-2+i, ri =& (i=o,l), Kg =O , 

1 Vo 

According to [lo] 

f” = c;?l-“4KTo (Ko?')-vo'2) 

is a solution of (12) and 

f’ =q-“4(C;K9(K17)- v1’2)+c;/T, (K,T+2)) 

is a solution of (13). Here Z,(z) are MacDonald functions [lo]. The constants Cp, C:, Cl must be 
determined from the boundary condition in (13) and the equalities (14). From (14) we obtain a linear 
system, solving which we obtain C,! = Cpn, (i = 1, 2), where 

-’ “1 =v1 tl* -v1’2(KlVl!;, (K,~~V1’2)&o(K~~~Vo’2)-K~V~d’2~T, (K1~;V1’2)&,, (Kg% 
-vu’2 )) 

An expression for n, can be obtained from the previous one by substituting Z,, Zl in place of K, , K:,. 
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MacDonald functions [lo] 
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following estimate, which follows from the asymptotic properties of the 

“2 in, = 0(e~p(-2K,T+~)) (1% 

Computing @‘l&l I,,=1 and using the boundary conditions in (13), we determine Cf. Then, expanding 
the MacDonald functions [lo] and using (15), we find the leading asymptotic form of f’ at s=O and 
perform an inverse Laplace transformation. Finally, we find that the pressure build-up curve in a CPM 
with fractal crack geometry can be described by the asymptotic formula 

Unlike an ordinary porous medium with logarithmic asymptotic form [4], the power asymptotic form 

Ap = constt” is characteristic of a fractal CPM. The exponent can be expressed in terms of the dimensions 
of the fractal 7, = (2 - d)/(4 - d). It is seen that for 1~ d < 2 the exponent ~~ lies in the range (0, l/3). By 

determining this exponent experimentally, one can find the fractal dimension of the crack system. Taking 
the limit as d + 2 (which is equivalent to 2, + 0), one can obtain from (16) the classical logarithmic 
formula for the pressure build-up curve, even though the derivation of (16) given here is clearly no longer 

valid for d = 2. 
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